
Welcome

Kaffe - one for all..
or

..to have a free Java
Peter C. Mehlitz

TransVirtual Technologies, Inc.
peter@transvirtual.com

http://www.transvirtual.com/one4all/



Roadmap

The Basics: "what is.."

Java - the tower of specs❍   

What is it - a language, an operating system..?❍   

❍   

How About Some Kaffe?

From a User Perspective❍   

Kaffe for Developers❍   

❍   

Where Are We Heading To

down to earth - the Desktop❍   

and up to the moon - Embedded Systems❍   

❍   



What is Java - the "tower of
specs"

not "just another programming language"❍   

a collection of specs describing a comprehensive, portable programing environment❍   

file:///F|/jit98/IT1/spec-lang.html


The Virtual Machine
Specification

file:///F|/jit98/IT1/down.html


The Java Native Interface (JNI)

more than just "calling a C function"❍   

interfacing Java to the outside world is part of Java specs❍   

file:///F|/jit98/IT1/down.html


API Specs

Application Programming Interfaces are the fasted moving part of Java development❍   

many categories (core, AWT, extensions like 2D, 3D, ..)❍   

whitepapers for some categories (e.g. JDBC), core API also covered (partly) by language and VM spec❍   

weakest part of spec tower, mostly described by javadoc generated online documentation❍   

come with sources not requiring a Java source license (but that doesn't do us any good)❍   

file:///F|/jit98/IT1/spec-lang.html


Abstract Window Toolkit Spec

AWT provides portable abstraction of a GUI system❍   

includes generic parts to build own widgets as "lightweights"❍   

file:///F|/jit98/IT1/down.html
file:///F|/jit98/IT1/spec-api.html.html


What is it - language or OS ?

with respect to runtime services, Java is much more a "Middleware Operating System" than just a language❍   

includes enough functionality to act as a "standalone" OS (native lib, optional platform OS and HW are
completely hidden)

❍   

moves the boundary of platform specific code out of the applications❍   

reads like a computer science curriculum❍   

file:///F|/jit98/IT1/down.html


Conclusion

too much to remember ?
(you have my sympathy)

Java is not just a language, it is a "middleware OS"❍   

Kaffe is not "just" a VM, it is a framework for tailored Java systems❍   

its desktop future: public sources (GPL), efficiency❍   

its embedded systems future: portability, scalability❍   

The real future? It's all up to us: don't moarn, fix and improve. Don't grab, contribute.

Thank You!

file:///F|/jit98/IT1/down.html


Kaffe - what is it?

Where does this strange name come from? How is it pronounced?
Kaffe  is the swedish word for coffe (the work was started in Stockholm)

❍   

How does it compare to the Java standard?
PersonalJava 1.1 compliant system, consisting of class libraries, VM (incl. JIT) and native libraries

❍   

Is is "just another Java implementation"?
No, it has a different attitude: providing a framework for using (target system) specialized components (like GC,
threads, AWT), all tuned towards: Portability, Scalability, Efficiency

❍   

Is it commercial or free?
the Desktop Edition (complete, non-crippled) is GPL, the Custom Edition (subsystems for use in embedded
systems) is commercial

❍   

How long has it been around?
first release in 2/96, first graphics in 12/96 (biss-awt), first autark GPL release in 6/98. See history

❍   

Who is using it?
More than 14000 downloads since 6/98 just from the TransVirtual server

❍   



History of Kaffe

kaffe is a result of combined efforts❍   

this is not a first try - kaffe has been around for a while❍   

file:///F|/jit98/IT1/down.html


Kaffe from a User Perspective

complete system (in conjunction with the Pizza compiler, viable alternative for JDK)❍   

available under GPL, no third party royalties / license restrictions❍   

small (400K for a statically linked executable, 500K class libs)❍   

portable (about 30 different operating systems, 8 HW architectures)❍   

integrated JIT (bridging the gap to C, see performance figures)❍   

file:///F|/jit98/IT1/down.html




Inside Kaffe

The Main Theme: Modularity❍   

Core Structures❍   

Interfaces and Subsystems

JIT❍   

Interpreter❍   

Threading❍   

Heap Management❍   

Graphics Support (AWT)❍   

❍   

Common InfraStructure❍   

The Source Tree❍   

Porting Kaffe❍   



Modularity: Internal Interfaces

there are several well separated sub-systems (heap management/GC, threading, JIT, graphics support, ..)❍   

there are numerous different target systems and application requirements (Smartcard to server, graphical / textual
app, browser context / stand-alone, ..)

❍   

there is NO silver bullet - to serve them all (optimal) with the same subsystems❍   

there IS a strong need to make them configurable (pick the right subsystems for the right problem)❍   

Kaffe uses several types of interfaces❍   



Types of Interfaces

Kaffe uses mostly (narrow) runtime interfaces for VM subsys, and (wide) link-time interfaces for native lib subsys❍   

file:///F|/jit98/IT1/down.html




Basic Structures

file:///F|/jit98/IT1/down.html


Kaffe Interfaces

file:///F|/jit98/IT1/kaffe-jit.html




Kaffe Source Tree

file:///F|/jit98/IT1/down.html




JIT (1) - Execution Engine
Types

file:///F|/jit98/IT1/down.html


JIT (2) - Java to Bytecode

file:///F|/jit98/IT1/down.html


JIT (3) - Stack Machine to Reg
Machine

file:///F|/jit98/IT1/down.html




JIT (4) - Translation Code

file:///F|/jit98/IT1/down.html


JIT (5) - Optimal JIT?

simple coherence, difficult conclusion: execution time depends on optimization time❍   

there is a different "break even" number of calls for each JITed method❍   

number of calls cannot be predicted in advance❍   

adaptive JIT compilation (intrp/JIT) adds additional overhead❍   

adaptive JIT optimization (global reg, peephole) depending on verifier output seems to be better❍   

file:///F|/jit98/IT1/down.html


JThreads - Queues Everywhere

file:///F|/jit98/IT1/down.html




AWT (1) - Types

differences show up especially in event processing❍   



AWT Type-1 Event Processing

file:///F|/jit98/IT1/down.html




AWT Type-2 Event Processing

file:///F|/jit98/IT1/down.html




AWT (2) - Layers

AWT implementation: providing a portable abstraction (public java.awt classes) for a plethora of different
graphical environments

❍   

involves three layers of decreasing portability❍   

requires substantial "external" functionality❍   

file:///F|/jit98/IT1/down.html


AWT (3) - Map

file:///F|/jit98/IT1/down.html




Infrastructure (1) - JDebug

multithreaded, dynamically generated code -> hard to debug❍   

standard facility for runtime configurable debug output❍   

file:///F|/jit98/IT1/down.html


Infrastructure (2) - JMeasure

standard facility for runtime configurable statistics❍   

tries to please Heisenberg ( ) -> no heap, efficient checks❍   

file:///F|/jit98/IT1/down.html


Porting Kaffe

Virtual Machine

start with interpreter❍   

JIT is hard part (depending on archirecture): trampolines, call setup, alignment❍   

jthreads: setjmp/longjmp, signals, setitimer, select❍   

native threads: POSIX-like?❍   

❍   

Graphics

type-2 AWT is easiest to port❍   

start with polling getNextEvent(), learn about blocking native operations❍   

start with TrueColor visual (PseudoColor depends on Colormap access)❍   

native image format❍   

font access (independent of Graphics target?)❍   

❍   

file:///F|/jit98/IT1/down.html


"C" - performance

Java = interpreter = slow ? Not true for JIT !❍   

consider additional Java functionality (exception handling, array check, GC, ..)❍   

builtin types, static methods, pre-allocated objects:
no reason why JITed Java should be slower than compiled C (put aside optimization)

❍   

file:///F|/jit98/IT1/down.html




Future of Java

no programming environment ever got mainstreamed so fast❍   

growth of acceptance now declines somewhat❍   

BUT: Java so far has been validated just in terms of web
programming (which was just a "booster")

❍   

Java still gives the right technical answers to real problems:

binary compatibility❍   

robustness❍   

efficiency Provisions❍   

std. runtime libaries❍   

comprehensive specs.❍   

implementation costs❍   

❍   

Java will gain additional momentum if it delivers on reducing application development / distribution costs for:

distributed, open applications -> Web (embedded Java)●   

new HW / devices -> Java in embedded systems●   

new operating systems / versions / toolkits -> Java for desktop applications●   

❍   



Kaffe to the Desktop !

Many applications don't need direct access to OS-specific functionality (email clients, calendars, editors, DB
front-ends, Web-browsers ..)

why to program them to a specific OS / GUI toolkit API (version)?
why not to use Java to do it portable ?

myths❍   

memory consumption
improve subsystems (GC, JIT), share resources (Java as a shell, Kaffe server)

❍   

native desktop integration
native GUI/toolkit compatibility = AWT flexibility (type 1/2 AWTs: Gtk, Xlib, ..)

❍   

missing toolkit functionality
consider lightweights (+ availability of AWT sources for native widget interfacing)

❍   

environment compatibility

"glibc" - problem, taming the combinations 

portable VM (+libs), factor out target system dependencies●   

❍   



GPL sources, automated configure/build process●   



Kaffe to the Desktop - Myths

Java is not free (no sources), requires a license
Kaffe is GPLed (with complete sources). Kaffe has been rebuilt completely from the specs (proof of suitability)

❍   

Java is too slow (interpreter)
Kaffe has JIT (see performance and WAT (by means of Cygnus GCJ). We (all) can still make it even faster (GC,
libs,..).

❍   

Java AWT needs Motif
Kaffe has Xlib (lightweight widgets) and GTK (native widgets) AWTs

❍   

It's just for fun, why to use a new environment
Can we really afford this? Ramification can be dangerous (what is the deal to publish something that will be
unnoticed).

❍   

file:///F|/jit98/IT1/down.html


Kaffe calling.. Embedded Systems

isolated, stand-alone hosts, workstations, PCs are "out", the current Web is just the advent of inter-networked
devices

❍   

HW versatility - just the sky is the limit (smartcards, phones, PDAs, internet terminals, settop boxes, embedded
controllers, workstations, cars, aircrafts?, space crafts ??)
most of these systems have one thing in common: nothing

❍   

HW may have a short life cycle - writing a development system that is used just for a single application is way too
expensive! ("gcc vs. MUA", smartcard example)

❍   

strong need for a common development / runtime environment

if it is going to be Java, it has to be:

Portable
Kaffe has a reasonably small source tree (<1 MB for a given target system), well separated target-specific
components (thread-, system call- interfaces)

❍   

Scalable
Kaffe can be easily configured to use/omit: JIT/interpreter, JNI, math, zip/jar support, native threads, (Type 3)
stand-alone AWTs, ..

❍   



"Between Tcl and Oberon"

How does Java compare to other (app programming) environments with respect to: ease-of-use, versatility,
platform integration ?

❍   

file:///F|/jit98/IT1/down.html




Kaffe Server

no matter how far we optimize: VM needs a lot of resources❍   

if you can't shrink it -> share it:

Java as a portable, graphical application shell

❍   

this is NOT just for "scripts", but full fledged applications❍   

think of the impact on "IPC" (comes for free, incl. synchronization)❍   

file:///F|/jit98/IT1/down.html


Lightweight Widget Example

DatePane example (from biss-awt): mini-button panel to select dates❍   

contains DayTable widget (workhorse), surrounded by DecoBox❍   

acts as Facade, Mediator, Composite❍   

almost no toolkit pitfalls ("super.paint(..)" )❍   

file:///F|/jit98/IT1/down.html




Lightweight Example: DecoBox

class DecoBox extends Component 
{ 
  String Text; 

  public void setText ( String text ) { 
    Text = text; 
  } 

  public void paint ( Graphics g ) { 
    Dimension size = getSize(); 
    size.width -=2; size.height -= 7; 

    g.setColor( Color.white); 
    g.drawRect( 1, 6, size.width, size.height); 
    g.setColor( Color.black); 
    g.drawRect( 0, 5, size.width, size.height); 

    if ( Text != null ) { 
      FontMetrics fm = getToolkit().getFontMetrics( getFont()); 
      int w = fm.stringWidth( Text); 
      g.setColor( getBackground()); 
      g.fillRect( 15, 5, w + 6, 3); 
      g.setColor( Color.black); 

file:///F|/jit98/IT1/down.html


      g.drawString( Text, 18, 10); 
    } 
  } 

  public boolean contains ( int x, int y ){ 
    return false; // we are just a decoration 
  } 
}
        



Lightweight Example: DatePane

public class DatePane extends Container 
{ 
  DecoBox         Box = new DecoBox(); 
  DayTable        Table = new DayTable( this); 
  ActionListener  Client; 
  static String[] Months = {"Jan","Feb","Mar","Apr","May","Jun",                            
                            "Jul","Aug","Sep","Oct","Nov","Dec"};

  public DatePane ( Date d ) { 
    add( Box); 
    add( Table);
    setDate( d); 
  } 

  public void addActionListener ( ActionListener client ) { 
    Client = AWTEventMulticaster.add( Client, client); 
  } 

  public Date getDate () { 
    return Table.getDate(); 
  } 

  public void setDate ( Date dt ) { 

file:///F|/jit98/IT1/down.html


    String mon = Months[ dt.getMonth()] + ' ' + 
                 Integer.toString( 1900 + dt.getYear()); 
    Box.setText( mon); 
    Table.setDate( dt); 
  } 

  public void doLayout () { 
    Dimension size = getSize(); 
    Box.setBounds( 0, 0, size.width, size.height); 
    Table.setBounds( 15, 15, size.width-30, size.height-30); 
  } 

  void notifyClients () { 
    if ( Client != null ) { 
      ActionEvent e = new ActionEvent( this,
                             ActionEvent.ACTION_PERFORMED,
"select"); 
      Client.actionPerformed( e); 
    } 
  } 
} 
        



Lightweight Example: DayTable

class DayTable extends Component implements MouseListener 
{ 
  Date            CurDate; 
  int[][]         DayArray; 
  FontMetrics     Fm; 
  DatePane        Master; 
  static int[]    MonthLen = { 31,28,31,30,31,30,31,31,30,31,30,31
}; 
  static String[] DayShorts = {"Mo","Tu","We","Th","Fr","Sa","Su"
}; 
  
  public DayTable ( DatePane master ) { 
    Font font = new Font( "Helvetica", Font.BOLD, 12); 
    setFont( font); 
    Fm = getToolkit().getFontMetrics( font); 
    Master = master; 
    addMouseListener( this); 
  } 

  public void mousePressed ( MouseEvent e ) { 
    Dimension size = getSize(); 
    int x = e.getX(); 
    int y = e.getY(); 

file:///F|/jit98/IT1/down.html


    int cw  = 2*Fm.charWidth( '0'); 
    int cd  = (size.width-7*cw)/8; 
    int rh  = Fm.getHeight(); 
    int rd  = (size.height-7*rh)/8; 
    int xIdx = Math.min( x / (cw+cd), 6); 
    int yIdx = Math.min( (y-rh-rd) / (rh+rd), 5 ); 
    int dn; 
    Graphics g; 

    if ( (dn=DayArray[xIdx][yIdx]) != 0) { 
      CurDate.setDate( dn); 
      if ( (g = getGraphics()) != null ) { 
        redraw( g); 
        g.dispose(); 
      } 
    } 

    Master.notifyClients(); 
  } 
  
  public void redraw ( Graphics g) { 
    if ( CurDate == null ) return; 
  
    Dimension size = getSize(); 
    int zw  = Fm.charWidth( '0'); 
    int cw  = 2*zw; 
    int cd  = (size.width-7*cw)/8; 



    int dc  = Fm.getDescent(); 
    int rh  = Fm.getHeight(); 
    int rd  = (size.height-7*rh)/8; 
    int dn, dof, dim = CurDate.getDate(); 
  
    g.setColor( Color.blue); 
    g.setFont( getFont() ); 
    for ( int dy=0; dy<7; dy++) 
      g.drawString( DayShorts[dy], cd+dy*(cw+cd), rd+rh-dc); 
  
    for ( int dy=0; dy<7; dy++) { 
      for ( int wk=0; wk<6; wk++) { 
        if ( (dn=DayArray[dy][wk]) != 0 ){ 
          if ( dn<10) dof=zw; 
          else        dof = 0; 
          if (dn==dim) g.setColor( Color.green); 
          else if ( dy==6) g.setColor( Color.red); 
          else g.setColor( Color.black); 
          g.drawString( Integer.toString(dn),
                        dof+cd+dy*(cd+cw), (wk+2)*(rd+rh)-dc ); 
        } 
      } 
    } 
  } 

  public void paint ( Graphics g ) { 
    Dimension size = getSize(); 



    g.setColor( getBackground()); 
    g.fillRect( 0, 0, size.width, size.height); 

    redraw( g); 
  } 

  public static int[][] getDayArray ( int mn, int ye) { 
    int[][] darr = new int[7][6]; 
    int sd = (new Date( ye, mn-1, 1)).getDay(); 
    int maxd = MonthLen[mn-1]; 

    if ( (mn==2) && (isLeapYear( ye)) ) maxd++; 
    if ( sd == 0) sd = 7; 

    for( int day=sd-1; day < maxd+sd-1; day++) 
      darr[day%7][day/7] = day-sd+2; 

    return darr; 
  }

  public Date getDate () { 
    return CurDate; 
  } 

  void setDate ( Date dt ) { 
    CurDate = dt; 
    DayArray = getDayArray( dt.getMonth()+1, dt.getYear() ); 



    repaint(); 
  } 
  
  public void mouseClicked ( MouseEvent e ) {} 
  public void mouseReleased ( MouseEvent e ) {} 
  public void mouseEntered ( MouseEvent e ) {} 
  public void mouseExited ( MouseEvent e ) {} 

  public static boolean isLeapYear ( int year) { 
    if ( year % 400 == 0 )      return true; 
    if ( year % 100 == 0 )      return false; 
    return (year % 4) == 0; 
  }
} 
        


	Lokale Festplatte
	file:///F|/jit98/IT1/banner.html
	file:///F|/jit98/IT1/roadmap.html
	file:///F|/jit98/IT1/java-tower.html
	file:///F|/jit98/IT1/spec-vm.html
	file:///F|/jit98/IT1/spec-jni.html
	file:///F|/jit98/IT1/spec-api.html
	file:///F|/jit98/IT1/spec-awt.html
	file:///F|/jit98/IT1/java-os.html
	file:///F|/jit98/IT1/remember.html
	file:///F|/jit98/IT1/kaffe-intro.html
	file:///F|/jit98/IT1/history.html
	file:///F|/jit98/IT1/kaffe-user.html
	file:///F|/jit98/IT1/kaffe-dev.html
	file:///F|/jit98/IT1/modularity.html
	file:///F|/jit98/IT1/ifc-types.html
	file:///F|/jit98/IT1/kaffe-structs.html
	file:///F|/jit98/IT1/kaffe-ifc.html
	file:///F|/jit98/IT1/kaffe-src.html
	file:///F|/jit98/IT1/jit-1.html
	file:///F|/jit98/IT1/jit-2.html
	file:///F|/jit98/IT1/jit-3.html
	file:///F|/jit98/IT1/jit-4.html
	file:///F|/jit98/IT1/jit-5.html
	file:///F|/jit98/IT1/jthreads.html
	file:///F|/jit98/IT1/awt-types.html
	file:///F|/jit98/IT1/awt-evt-t1.html
	file:///F|/jit98/IT1/awt-evt-t2.html
	file:///F|/jit98/IT1/awt-layers.html
	file:///F|/jit98/IT1/awt-map.html
	file:///F|/jit98/IT1/jdebug.html
	file:///F|/jit98/IT1/jmeasure.html
	file:///F|/jit98/IT1/porting.html
	file:///F|/jit98/IT1/c-performance.html
	file:///F|/jit98/IT1/future.html
	file:///F|/jit98/IT1/desktop.html
	file:///F|/jit98/IT1/myths.html
	file:///F|/jit98/IT1/embedded.html
	file:///F|/jit98/IT1/tcl-oberon.html
	file:///F|/jit98/IT1/kaffe-server.html
	file:///F|/jit98/IT1/lw-example.html
	file:///F|/jit98/IT1/datepane-code-1.html
	file:///F|/jit98/IT1/datepane-code-2.html
	file:///F|/jit98/IT1/datepane-code-3.html


